84. Synthese und Circulardichroismus optisch aktiver Carotinoidmodelle

von Richard Buchecker, Urs Marti und Conrad Hans Eugster

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(24.11.82)

Synthesis and Circular Dichroism of Optically Active Carotenoid Models

Summary

The synthesis of the following optically active carotenoidic model compounds (-)-(3 S, 3' S)-3, 3'-diisopropenyl-16, 17, 18, 16', 17', 18'-hexanorare described: β , β -carotene (1), (3R, 3'R)-19, 20, 19', 20'-tetranor-zeaxanthin (2) and (6R, 6'R)-19,20, 19', 20'-tetranor- ε , ε -carotene (3). These compounds were synthesized for the following reasons: 1) the presence of methyl groups at C(1), C(1'), C(5), C(5') of cyclic carotenoids profoundly affects the torsional angle of the C(6), C(7)- and C(6'), C(7')-bonds. Sign and magnitude of this angle are, according to recent theories [4] [5], responsible for a helical chromophore and for strong conservative [4] *Cotton* effects. CD. measurements of 1 give experimental support to these statements. In comparison to zeaxanthin, 1 exhibits weaker and less temperature dependent *Cotton* effects. Of more significance, the shape of the curve is no longer conservative, as expected. This constitutes experimental evidence for the contention that the β -endgroups and the polyene chain indeed form an inherently dissymmetric chromophore in optically active β , β -carotene derivatives; 2) the slightly S-shaped form of the polyene chain of carotenoids, shown by X-ray analyses [12] [13], is mainly ascribed to the presence of the methyl groups in the chain. Models 2 and 3 therefore are assumed to be linear. CD. studies of these compounds should consequently give information about the influence of deviation from linearity and planarity of the polyene on the CD. spectra of carotenoids. CD. measurements of 2 and 3 show that the lack of methyl groups does not alter the general type of the curve. Only the intensity and to some extent the position of the *Cotton* effects are influenced. Carotenoids with the ε -endgroup possess inherently symmetric but asymmetrically distorted chromophores.

The assumption that non-conservative CD. spectra could become conservative upon cooling [4] is experimentally confirmed by model 3.

The rule stating that pairs of all-(E) and mono-(Z) isomers of carotenoids with only one cyclic endgroup should have CD. spectra with the same sign [5] is disproved by the CD. spectra of four stereoisomeric rubixanthins (s. Fig. 5).

The UV./VIS. spectrum of 3, λ_{max} 447 (ε 216000), 418 (ε 189000) exhibits the highest molecular extinction ever reported for a carotenoid.

1. Einleitung. – Chiroptische Methoden haben zur Bestimmung der absoluten Konfiguration eines Carotinoids grosse Bedeutung erlangt. Die im Verlauf der vergangenen 10 Jahre veröffentlichten CD.-Daten¹) sind vor kurzem zusammengefasst [4] und modellmässig gedeutet worden [4–6]. Wesentliche Erkenntnisse sind:

1) β -Endgruppe und Polyenkette bilden einen inhärent dissymmetrischen Chromophor²), da die C(5), C(6)- und die C(7), C(8)-Doppelbindungen aus sterischen Gründen nicht koplanar liegen³). Der Cyclohexenring nimmt eine durch Substituenten an C(2) oder C(3) oder C(4) bestimmte Halbsesselkonformation ein und erzwingt damit auch eine bevorzugte Helizität des Chromophors. Abkühlung begünstigt die für diese Helizität verantwortliche Konformation der C(6), C(7)-Bindung und verstärkt damit den *Cotton*-Effekt [5]. Carotinoide, die diese Merkmale aufweisen, zeigen im Bereich von 220-500 nm fünf bis sechs *Cotton*-Effekte mit alternierenden Vorzeichen, die nach [4] als *konservativ* bezeichnet werden. Die Anwendung des «twisted diene models» [8] und der sog. C₂-Regel [9] erlaubt die Deutung der mehrfach beobachteten Umkehr des Vorzeichens der *Cotton*-Effekte bei Auftreten von (Z)-Geometrie an einer Doppelbindung des Polyens [4-6];

2) Carotinoide mit einer ε -Endgruppe gehören eher zum Typus des inhärent symmetrischen, jedoch asymmetrisch gestörten²) Chromophors. Ihre CD.-Spektren sind *nicht-konservativ* ([4]: ihr Kurvenverlauf zeigt mehrere Maxima gleichen Vorzeichens);

Frühere ORD.-Messungen s. [1]; erste CD.-Messungen an konfigurativ gesicherten Carotinoiden s.
[2] [3] und darauffolgende Arbeiten; Zusammenstellung s. [4].

³) Zusammenstellung von Röntgenstrukturdaten s. [5].

²) Im Sinne von [7].

3) Eine grössere Zahl von optisch aktiven Carotinen und Carotinoiden können weder dem konservativen noch dem nicht-konservativen Typus zugeordnet werden [4].

Ziel der vorliegenden Arbeit war es, optisch aktive Carotinoide zu synthetisieren, um die Gültigkeit der theoretischen Vorstellungen von [4] und [5] in folgender Hinsicht zu überprüfen: Einfluss der Methylgruppen an C(1), C(1'), C(5) und C(5') auf den Torsionswinkel C(5), C(6)–C(7), C(8)⁴) und Einfluss der Methylgruppen an C(9), C(9'), C(13) und C(13') auf Planarität und Linearität des Nonaen-Chromophors.

Von der Modellverbindung 1 ist zu erwarten, dass sie wegen des Wegfalls der sterischen Hinderung durch die Methylgruppen an C(1), C(1'), C(5), C(5') keinen inhärent dissymmetrischen Chromophor bildet und demzufolge keinen konservativen CD. aufweisen wird⁵).

Carotine und Carotinoide, d. h. Polyene mit vier Methylgruppen in der Polyenkette, sind, wie Röntgenstrukturanalysen ergeben haben [12] [13], nicht linear gebaut, sondern zeigen eine leichte S-förmige Abweichung von der Linearität. Da die in [4] berechneten reinen π -Modelle Linearität und Koplanarität der Polyenkette voraussetzen, war es notwendig, Tetranorcarotinoide vom Typus 2 und 3 zu synthetisieren, um den Einfluss der Methylgruppen H₃C(19), H₃C(19'), H₃C(20), H₃C(20') auf ihren CD. kennenzulernen.

Vor kurzem haben wir aus Hagebutten von Rosa pomifera vier (Z/E)-isomere Rubixanthine isoliert [14]; s. 4 für das (all-E)-Isomere. Ihre CD.-Spektren sollen hier im Zusammenhang mit der C_2 -Regel besprochen werden.

2. Synthese von (3S, 3'S)-3, 3'-Diisopropenyl-16, 17, 18, 16', 17', 18'-hexanor- β , β carotin $(1)^{4})^{6}$ (s. Schemata 1 und 2). – Ausgehend von (–)-Perillaldehyd (5)⁷) wurde mit dem (E)-Ylid 6⁸) der Ester 7 in 73proz. Ausbeute hergestellt. Die Verknüpfung erfolgte ausschliesslich mit (E)-Konfiguration (J(7,8) = 16 Hz), auch blieb die Konfiguration der C(9), C(10)-Doppelbindung erhalten (Signal von H₃C-C(9) bei 2,3 ppm). Nach Reduktion zum Alkohol 8 (79%) und Oxydation zum Aldehyd 9 (94%) erfolgte Kondensation mit dem Bis (phosphoran) 10⁹) zum gewünschten Carotinoid 1, mit allerdings mässiger Ausbeute. Ein einfacherer Weg führte zum Alkohol 11, dem Bromid 12 und dem Triphenylphosphoniumsalz 13. Leider trat bei der *Wittig*-Kondensation des Ylids aus 13 mit Crocetindial fast vollständige Racemisierung ein. Das so erhaltene rac. 1 stimmte in den physikalischen Daten, mit Ausnahme des höheren Schmelzpunktes und der fehlenden optischen Aktivität, mit (–)-1 überein. Es dürfte auch Anteile der *meso*-Verbindung enthalten.

⁸) Hergestellt nach [17].

⁴⁾ Die Carotinoid-Bezifferung wurde zur Erleichterung der Vergleiche beibehalten.

⁵) Der Einfluss der Verdrillung der C(6), C(7)-Bindung auf das Elektronenspektrum ist wohl bekannt (vgl. [10] und [11], bes. S. 237 und 244 und viele spätere Arbeiten in der Carotinoidchemie).

⁶) IUPAC-Bezeichnung: (all-*E*)-1, 18-Bis[(*S*)-4-isopropenyl-1-cyclohexen-1-yl]-3, 7, 12, 16-tetramethyl-1, 3, 5, 7, 9, 11, 13, 15, 17-octadecanonaen.

⁷) In [15] sind $[a]_{\rm D}$ -Werte bis $-150,4^{\circ}$ (in Substanz?, Lösungsmittel?) angegeben. Das von uns verwendete, von Aldrich Chemicals bezogene Präparat hatte $[a]_{\rm D} = -113^{\circ}$ in Äthanol. Es lieferte nach Reduktion einen Alkohol (11) mit wesentlich höherer Drehung als das von [16] durch Reduktion von 5 hergestellte Präparat.

⁹) Nach der Methode von [18] (s. auch [19]).

^a) Alle Drehungen in Äthanol.

Die ausgesprochene Feinstruktur der Elektronenspektren von 1 mit hoher Extinktion (s. *Tab. 1* und *Fig. 1*) und der hohe Smp. zeigen, dass eine (all-*E*)-Konfiguration vorliegen muss. Dies wird gestützt durch das ¹H-NMR.-Spektrum, in dem die Signale der vier Methylgruppen in der Polyenkette fast zusammenfallen (1,97 und 1,96 ppm), sowie durch das einfache Muster der Vinylprotonen. Der Vergleich der UV./VIS.-Daten mit β , β -Carotin und Lycopin zeigt, dass ein praktisch ungehinderter Undecaenchromophor wie im Lycopin vorliegt (s. *Tab. 1*).

3. Synthese von (3R, 3'R)-19, 20, 19', 20'-Tetranor-zeaxanthin $(2)^{10}$ (s. Schema 3). – Die Synthese wurde entsprechend dem Aufbauschema $C_{12}+C_6 \rightarrow C_{18} \xrightarrow{\text{Dimer.}} C_{36}$ geplant und ausgeführt. Die Olefinierungsschritte sollten nach Methoden erfolgen, die erfahrungsgemäss vorwiegend (E)-Konfiguration der Doppelbindungen erzeugen. Aus (R)-3-Hydroxy- β -ionon (14) [23] wurde nach Schutz der Hydroxyl-

Tabelle 1. VISSpektraldaten von 1, β , β -Carotin und Lycopin								
	1 ^b)		I		II ^c)		II ^d)	
154000	460	133700	478	122 000	501	156400	503	172 000
172000	434	155800	452	139000	470	174800	472,5	186000
114000	S 412	111500	429	97000	444	118000	443	123 000
45.200					294	45000	295	52000
28500	270	15000	272	21700				
	154000 172000 114000 45200 28500	Tabel 1 ^b) 154000 460 172000 434 114000 \$\$ 412 45200 28500 270	Tabelle 1. VISSpi 1 ^b) 154000 460 133700 172000 434 155800 114000 S 412 111500 45200 28500 270 15000	Tabelle 1. VISSpektraldate 1b) I 154000 460 133700 478 172000 434 155800 452 114000 \$\$\$ 412 111500 429 45200 28500 270 15000 272	Tabelle 1. VISSpektraldaten von 1, β , β -(1b)I154000460133700478122000172000434155800452139000114000S 4121115004299700045200285002701500027221700	Tabelle 1. VISSpektraldaten von 1, β , β -Carotin ur1b)IIIc)154000460I33700478122000501172000434155800452139000470114000S 41211150042997000444452002701500027221700	Tabelle 1. VISSpektraldaten von 1, β , β -Carotin und Lycopin1b)IIIc)154000460133700478122000501156400172000434155800452139000470174800114000S 41211150042997000444118000452002944500029445000285002701500027221700	Tabelle 1. VISSpektraldaten von 1, β , β -Carotin und Lycopin1b)III ^c)II ^d)154000460I33700478122000501156400503172000434155800452139000470174800472,5114000S 412111500429970004441180004434520029445000295285002701500027221700

^{a)} In EPA (diese Arbeit); ^{b)} in Hexan (diese Arbeit); $I = \beta, \beta$ -Carotin in Hexan [20]; II = Lycopin; ^{c)} in Hexan [21]; ^{d)} in Hexan [22].

Für β , β -Carotin und Lycopin sind in der Literatur z.T. stark abweichende quantitative Spektraldaten publiziert.

¹⁰) IUPAC-Bezeichnung: (all-*E*)-1, 18-bis-[(*R*)-4-Hydroxy-2, 6, 6-trimethyl-1-cyclohexen-1-yl]-1, 3, 5, 7, 9-11, 13, 15, 17-octadecanonaen.

Fig. 1. UV./VIS.-Spektren der Modellverbindungen 1 (----- in Hexan), 2 (----- in EPA) und 3 (····· in Hexan)

funktion (15) und Hypobromit-Abbau die Carbonsäure 16 hergestellt. Nach üblicher Reduktion zu 17 und Oxydation zu 18 wurde mit dem Phosphonat 19 in Tetrahydrofuran mit fester KOH kondensiert (nach [24]). Der Hydroxyester 21 ((-)-(R)-3-Hydroxy-19,20-dinor-vitamin-A-säureäthylester) wurde in blassgelben Kristallen, Smp. 85-87°, erhalten. Der Vergleich der UV.-, ¹H-NMR.- und ¹³C-NMR.-Daten mit denjenigen, die an 19,20-Dinor-vitamin-A-säureester gemessen worden sind [25] [26] brachte ausgezeichnete Übereinstimmung und bewies die (all-E)-Konfiguration unserer Verbindung. Nach Reduktion von 20 bzw. 21 mit DIBAH in Äther zu den Alkoholen 22 und 23 (Smp. 116-118°) wurden durch MnO₂-Oxydation die empfindlichen Aldehyde 24 und 25 erhalten. Reduktive Kupplung von 24 nach der Methode von Ishida & Mukayama [27] gab ohne Schwierigkeiten das wohlkristallisierte silvlierte Carotinoid 26, in gelbbraunen Kristallen mit Metallglanz, Smp. 180-181°, wenn auch in mässiger Ausbeute. Diese Verbindung ist ohne Zweifel (all-E)-konfiguriert: Im UV./VIS.-Spektrum ist kein «cis-Pik» der zentralen Doppelbindung zu erkennen (s. Fig. 1): Die Vinylregion weist nur 2 Signale bei 6,14 (4 H) und 6,30 (14 H) ppm auf und das ¹³C-NMR.-Spektrum zeigt nur Signale für die halbe Anzahl C-Atome. Somit ist die Verbindung C_{7} -symmetrisch und hat Struktur 26. Auffallend ist der schmale Bereich, in dem die sp²-C-Atome der Kette absorbieren: Sie erscheinen zwischen 131,42 bis 134,24 ppm (vgl. mit dem Bereich von 125,0-138,5 für Zeaxanthin [26]). Darüberhinaus kann bei normalen Carotinoiden eine (Z)-Isomerie, verglichen mit dem

¹¹) Vgł. analoge, wenn auch nicht so ausgeprägte Verschiebungen bei 19,19'-Dinor- β , β -carotin im Vergleich mit β , β -Carotin [30].

Tabelle 2. VIS.-Spektraldaten von 26, 2 und Zeaxanthin

26 ^a)		2 ^b)		III		IV	
458	110000	459	106 000	481	125300	477	121000
433	133 500	435	127000	453	142100	449	137000
412	98000	415	95000	Sh. 432	99200	Sh. 430	97200
272	13 000	269	14700	275	23000	273	20500

a) In Hexan/Äther 1:1 (diese Arbeit).

b) In EPA (diese Arbeit); III = (3S, 3'S)-Zeaxanthin in CH₂Cl₂/Hexan [29]; IV = meso-Zeaxanthin in CH₂Cl₂/Hexan [29].

jeweiligen (E)-Isomeren eine Verschiebungsdifferenz von bis zu 8 ppm bewirken [26].

Halolyse mit Tetraäthylammoniumfluorid [28] führte zum gesuchten Tetranorzeaxanthin (2), bräunlich-gelbe Kristalle, Smp. 207-208°. Abgesehen von den Signalen der Silylsubstituenten sind die ¹H- und ¹³C-NMR.-Spektren von 2 und 26 identisch. In UV./VIS.-Spektren von 26 und 2 fallen im Vergleich mit Zeaxanthin (s. *Tab. 2* und *Fig. 1*) die starken hypso- und hypochromen Verschiebungen auf¹¹). Im Massenspektrum von 2 wird erwartungsgemäss weder der M^+ -92-Pik (Abspaltung von Toluol) noch der M^+ -106-Pik (Abspaltung von Xylol) beobachtet. Prominent ist die Abspaltung von Benzol.

4. Synthese von (6 R, 6' R)-19, 20, 19', 20'-Tetranor-ε, ε-carotin (3)¹²) (s. Schema 4). – Aus (+)-(R)-a-Ionon (27)¹³) wurden analog zu Kap. 3 über die Stufen 28, 29 und 30

¹²) IUPAC-Bezeichnung: (all-*E*)-1, 18-Bis[(*R*)-2, 6, 6-trimethyl-2-cyclohexen-1-yl]-1, 3, 5, 7, 9, 11, 13, 15, 17-octadecanonaen.

¹³) Herstellung gemäss Vorschrift in [31] und dort zitierter früherer Literatur.

^a) Für das Enantiomere wurde früher [32] $[a]_D^{22} = -245.5^\circ$ gefunden.

3 ^a)		v		VI		VII		VIII		IX	
447	216000	471	161000	475	152900	468	155900	469	162 200	472	?
418	189000	441	161000	445	154400	438	154100	438,5	161100	443	165000
397	115000	417	100 000	420	101200	414	99800	415	103 500	419	?
375	52700										
360	20700							332	11500		
				331	8180			320,5	10130		
259	27400	267	35000	268	35600	265,5	33 900	267	32870		

Tabelle 3. VIS.-Spektraldaten von 3 und verwandten Carotinoiden mit Nonaen-Chromophor

^{a)} Diese Arbeit; in Hexan, Mittel aus drei Messungen; $V = (\pm) \cdot \varepsilon, \varepsilon$ -Carotin in Hexan [33]; $VI = (+) \cdot \varepsilon, \varepsilon$ -Carotin in Cyclohexan [34]; $VII = (1R, 1'R, 6S, 6'S) \cdot [16, 16, 16', 16', 16', 16', 2H_6] \cdot \gamma, \gamma$ -Carotin in Hexan [35]; VIII = Neurosporin in Hexan [36]; vgl. auch [37]; IX = Sarcinaxanthin in Aceton [38].

die C₁₈-Verbindungen **31**, **32** und **33** aufgebaut. Für die C₁₂-Verbindungen ist die (*E*)-Konfiguration durch ¹H-NMR.-Spektren gesichert. Für die C₁₈-Verbindungen ist die (all-*E*)-Konfiguration schwieriger zu beweisen; folgende Argumente sprechen dafür: hohe Extinktion und Lage der UV.-Maxima von **32**¹⁴) und sieben sp²-C-Atome der Kette absorbieren im schmalen Bereich von 130,75 bis 133,94 ppm. Oxydation mit MnO₂ gab den Aldehyd **33**, dessen ¹H- und ¹³C-NMR.-Spektren im gemeinsamen Strukturbereich gut mit denjenigen des Esters **31** übereinstimmen.

Reduktive Kupplung an 33 gab das gesuchte 19, 20, 19', 20'-Tetranor- ε , ε -carotin (3), bräunlich-orange Kristalle, Smp. 149–150°. UV./VIS.- und ¹H-NMR.-Spektren zeigen, dass es sich um eine symmetrische und (all-*E*)-Verbindung handelt; s. *Figur 1, Tabelle 3* und Formel 3 in *Schema 1*.

Das Tetranor-carotin 3 zeigt ungewöhnlich ausgeprägte Feinstruktur und die höchste bisher an einem Polyen gemessene Extinktion. Im Massenspektrum ist das für eine anwesende ε -Endgruppe typische Fragment (M^+ -78) gut ausgebildet; erstaunlicherweise fehlt dagegen die Abspaltung von Benzol.

5. CD.-Spektren. – 5.1. CD.-Spektren von 1 (s. Fig. 2) zeigen, dass nicht mehr ein konservativer Typus vorliegt; der Kurvenverlauf weicht von allen bisher gemessenen β , β -Carotinoiden mit Substituenten an C(2) oder C(3) oder C(4) ab. Zudem

¹⁴) Das sog. a-Vitamin A [33] hat λ_{max} . 324 (38200), 310 (45500). 298 (32900): zum Vergleich 32: 318 (39100), 303 (44200), 291 (30300), beide in C₂H₅OH.

Fig. 2. CD.-Spektren der Modellverbindung 1 (in EPA, bei 22° -----, -180° -----) und von $(3\mathbf{R}, 3'\mathbf{R})$ -Zeaxanthin (bei 22° , in Dioxan \cdots)

Fig. 3. CD.-Spektren der Modellverbindung 2 (in EPA, bei 22° -----) und von (3R, 3'R)-Zeaxanthin (bei 22°, in Dioxan....)

sind die Intensitäten geringer. Diese nehmen beim Abkühlen nur um das Zweifache zu und nicht um einen Faktor 4-6 wie beim Zeaxanthin [5] bzw. (1R, 1'R)-[16, 16, 16', 16', 16', 16', 2H₆]- β , β -Carotin [35]. Dieses experimentelle Ergebnis ist eine schöne Bestätigung für die Theorie, wonach die starken, konservativen Cotton-Effekte von optisch aktiven Carotinen und Carotinoiden mit β -Endgruppen auf bevorzugte Konformationen mit nicht-koplanaren C(5), C(6)- und C(7), C(8)-Doppelbindungen beruhen [4] [5].

5.2. CD.-Spektren von 2. Sie entsprechen in Form und Temperaturabhängigkeit ungefähr denen von (3 R, 3' R)-Zeaxanthin (s. Fig. 3). Der ganze Verlauf ist konservativ. Das Fehlen der Methylgruppen der Polyenkette beeinflusst vor allem die Intensitätsverhältnisse der Einzelbanden, ändert aber den zugrundeliegenden Typus nicht.

Fig. 4. CD.-Spektren der Modellverbindung 3 (in EPA, bei 22° -----, -180° -----, -180° -----) und von (6R, 6'R)- ε , ε -Carotin (bei 22° , in Hexan -----)

5.3. CD.Spektren von 3. Sie sind in Figur 4, zusammen mit einer neuen Aufnahme des Spektrums von (6R, 6'R)- ε , ε -Carotin¹⁵), abgebildet. Überraschend sind die starken Cotton-Effekte im Sichtbaren, ihre ausgeprägte Feinstruktur und die Veränderungen, die beim Abkühlen auftreten. Bei -90° sind einige Banden bathochrom verschoben und bedeutend intensiver; bei - 180° treten Aufspaltungen und im langwelligen Bereich sogar Vorzeichenwechsel auf. Damit ist die in [4] diskutierte Möglichkeit, wonach nicht-konservative CD.-Spektren beim Abkühlen in konservative, mindestens im langwelligen Bereich, übergehen könnten, erstmals experimentell nachgewiesen.

Es ist möglich, dass die sehr grossen *Cotton*-Effekte auf eine Wechselwirkung der π -Elektronen der C(4), C(5)-Doppelbindung mit π -Elektronen der konjugierten Kette zurückzuführen sind (vgl. [40]). Abkühlung könnte solche Konformationen begünstigen, bei denen optimale Überlappung auftritt.

Da Röntgenstrukturanalysen von Tetranor-Carotinoiden vom Typus 2 und 3 fehlen, kann nur vermutet werden, dass die Polyenkette in diesen Molekeln linearen Bau aufweist. Auf jeden Fall ist der Einfluss der Methylgruppen in der Polyenkette nicht von entscheidender Bedeutung für den Charakter des Circulardichroismus und die von Sturzenegger et al. [4] verwendeten π -Modelle sind auch von diesem Gesichtspunkt aus berechtigt.

Fig. 5. CD.-Spektren isomerer Rubixanthine (in EPA, bei 22°): all-trans —— (quantitativ) und der drei mono-cis-Isomeren Rubi A -----, Rubi B ····· und Rubi C ---- (qualitativ)

¹⁵) Synthese, absolute Konfiguration und frühere CD.-Kurven sind in [34] bzw. [39] [32] bzw. [3a,c] zu finden. Die neue Aufnahme erfolgte durch fünffache Akkumulation an einem Circulardichrographen Jasco J-500 C bei RT. und c = 5,74 · 10⁻⁶ M.

Die neuerdings aus Hagebutten von Rosa pomifera isolierten (Z/E)-isomeren Rubixanthine¹⁶) zeigen die in Figur 5 abgebildeten CD.-Spektren. Unerwartet ist, dass die (Z)-Isomeren gegenüber dem (all-E)-Isomeren (4) nahezu spiegelbildliche Cotton-Effekte aufweisen. Noack & Thomson hatten postuliert [5] [6], dass monocyclische Carotinoide beim Übergang der (all-E)-Form in eine (mono-Z)-Struktur keine Inversion des CD.-Spektrums erleiden sollten. Sie stützten sich auf das Beispiel des (all-E)- und (9Z)-7, 8-Didehydro-12'-apo-astaxanthinals. Unsere Befunde zeigen, dass dieses Postulat («rule 2» in [5] [6]) revidiert werden muss.

Wir danken dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung für die finanzielle Unterstützung dieser Arbeit, Herrn R. Kyburz für NMR.-Spektren, Frl. J. Brecher für ihre experimentelle Mitarbeit, den analytischen Abteilungen unseres Instituts für Massen- und IR.-Spektren und den Herren Dres. H. Mayer und R.K. Müller (F. Hoffmann-La Roche, Basel) für die Überlassung von (R)-3-Acetyloxy- β -ionon.

Experimenteller Teil

Allgemeines. Angaben über verwendete Geräte und Arbeitstechniken s. [41]. Alle Versuche wurden, soweit möglich, unter N₂ oder Ar ausgeführt. UV./VIS.-Spektren in Äthanol, sofern nicht anders angegeben. EPA=Äther/2-Methylbutan/Äthanol 5:5:2. CD.-Spektren bei tiefen Temperaturen wurden bezüglich der Volumenkontraktion korrigiert (1th Grad⁻¹ [5]). [a]_D-Werte wurden bei RT. (22°) in Äthanol gemessen. Bei NMR.-Spektren tragen die Atome die Nummer der Carotinoidnomenklatur.

1. Herstellung von (2E, 4E)-5-[(S)-4-Isopropenyl-1-cyclohexen-1-yl]-3-methyl-2, 4-pentadiensäuremethylester (7). Zu einer Suspension von 0,83 g pulverisierter KOH in 28 ml trockenem THF wurde bei RT. unter Rühren ein Gemisch von 0,84 g (-)-Perillaldehyd (5; Aldrich Chemicals; $[a]_D = -113^{\circ}$ (Äthanol), $-125,2^{\circ}$ (in Substanz)) und 1,75 g Phosphonat 6 [17] [42] in 5 ml THF getropft. Nach 6 Std. wurde mit Äther verdünnt, über Celite filtriert und eingedampft. Destillation des Rückstands bei 105°/0,04 Torr (Kugelrohr) gab 1,01 g (73%) schwach gelbes Öl; $[a]_D = -7,7^{\circ}$. UV.: 303 (26600). – CD. (Äthanol): ca. 300 (-0,4). – ¹H-NMR. (90 MHz, CDCl₃): 1,74 (s, 3 H, 3 H-C(1')); 1,2-1,8 (m, 2 H, 2 H-C(2)); 2,0-2,5 (m, 5 H, 2 H-C(1), H-C(3) und 2 H-C(4)); 2,30 (s, 3 H, H₃C-C(9)); 3,68 (s, 3 H, 3 H-CO); 4,72 (s, 2 H, 2 H-C(3')); 5,77 (s, 1 H, H-C(10)); 5,98 (br. s, 1 H, H-C(5)); 6,14 und 6,62 (AB, J=16, 2 H, H-C(7) und H-C(8)). – MS.: 246 (3, M⁺), 213 (1, M⁺-15), 218 (5, M⁺-26), 215 (3, M⁺-31), 205 (18, M⁺-41), 150 (8, M⁺-41-15), 187 (11, M⁺-59), 68 (100).

2. Herstellung von (2E, 4E)-5-[(S)-4-Isopropenyl-1-cyclohexen-1-yl]-3-methyl-2, 4-pentadienol (8). Die Lösung von 1 g 7 in 45 ml trockenem Äther wurde bei 0° und unter Rühren mit 10,75 ml 1N DIBAH in Hexan tropfenweise versetzt. Nach 2,5 Std. wurden einige Tropfen Methanol, dann etwas Wasser zugegeben und schliesslich mit 5proz. H₂SO₄-Lösung angesäuert. Die übliche Aufarbeitung ergab 699 mg 8 als farbloses Öl, Sdp. 105-110°/0,04 Torr (Kugelrohr). $[a]_D = -87,6^{\circ}$. -UV.: 281 (26900), 271 (33000), 261 (26900). - CD. (Äthanol): ca. 265 (-1,25). - ¹H-NMR. (90 MHz, CDCl₃): 1,71 (s, 3 H, 3 H-C(1')); 1,79 (s, 3 H, H₃C-C(9)); 1,2-1,9 (m, 2 H, 2 H-C(2)); 2,0-2,5 (m, 5 H, 2 H-C(1), 2 H-C(4) und H-C(3)); 4,24 (d, J=7, 2 H, 2 H-C(11)); 4,70 (s, 2 H, 2 H-C(3')); 5,67 (t, J=7, 1 H, H-C(10)); 5,82 (br. s, 1 H, H-C(5)); 6,19 und 6,23 (AB, J=16, 2 H, H-C(7) und H-C(8)).

3. Herstellung von $(2E, 4E)-5 \cdot [(S)-4$ -Isopropenyl-1-cyclohexen-1-yl]-3-methyl-2, 4-pentadienal (9). Die Lösung von 292 mg 8 in 30 ml trockenem Essigester wurde mit 5 g MnO₂ «Merck» bei RT. 30 Min. gut gerührt. Nach Filtration durch Celite und Eindampfen wurde der Rückstand destilliert. Ausbeute 272 mg (94%), Sdp. 110°/0,04 Torr (Kugelrohr). $[a]_D = -97,4^{\circ}$. - UV.: 326,5 (qual.). - ¹H-NMR. (90 MHz, CDCl₃): 1,76 (s, 3 H, 3 H-C(1')); 1,2-1,9 (m, 2 H, 2 H-C(2)); 2,29 (s, 3 H, H₃C-C(9)); 2,0-2,5 (m, 5 H, 2 H-C(1), 2 H-C(4) und H-C(3)); 4,73 (s, 2 H, 2 H-C(3')); 5,98 (d, J=9, 1 H, H-C(10)); 6,09 (br. s, 1 H, H-C(5)); 6,27 und 6,73 (AB, J=16, 2 H, H-C(7) und H-C(8)); 10,14 (d, J=9, 1 H, H-C=O).

¹⁶) Vgl. die nachfolgende Mitteilung [14].

4. Synthese des Carotinoidmodells (-)-1. Die Lösung von 529 mg Bis(phosphoran) 10 [18] [19] [43] in 5 ml abs. Methanol wurde bei - 30° mit 0,2 ml 1N CH₃ONa versetzt. Hierauf wurden gleichzeitig und unter Rühren die Lösungen von 1,23 ml 1N CH₃ONa und 272 mg 9 in 1,3 ml abs. Methanol zugetropft. Die Lösung wurde hierauf auf RT. kommen gelassen und 3 Std. gerührt. Nach weiteren 3 Std. bei 55° wurde gekühlt, mit Äther verdünnt, mit Wasser ausgewaschen und wie üblich aufgearbeitet. Zur Entfernung von Triphenylphosphinoxid wurde der erhaltene Rückstand in Hexan gelöst und diese Lösung mehrmals mit Methanol/Wasser 9:1 gewaschen. Nach erneutem Eindampfen und Trocknen des roten Rückstandes wurden 175 mg (26%) rohes Carotinoid 1 erhalten, das direkt aus CH₂Cl₂/C₂H₅OH kristallisiert und umkristallisiert wurde. Feine, ziegelrote Nädelchen, Smp. 215° (evakuierte Kapillare, unkorr.). $[a]_D = -25.9^\circ$ (CH₂Cl₂). - UV./VIS.: s. Tabelle 1. - CD. (EPA): 365 (0), ca. 350 (+1,8), 320 (0), 288 (-8,7), 280 (-5,4), 258 (0), 250 (+2,7), 245-210 (0); Tieftemperaturmessungen s. Figur 2. - ¹H-NMR. (200 MHz, CDCl₃): 1,2-1,7 (m, 4 H, 2 H--C(2,2')); 1,76 (s, 6 H, 3 H–C(1",1"); 1,96 und 1,97 (je s, je 6 H, H₃C–C(9,9') und H₃C–C(13,13')¹⁷)); 1,8-2,5 (m, 10 H, allylische H); 4,74 (s, 4 H, 2 H-C(3") und 2 H-C(3")); 5,89 (m, 2 H, H-C(5) und 10 H, H-C(7,7',8,8',10,10',12,12',14,14'); H-C(5'): 6,18-6,45 (*m*. 6.60-6.78 (m, 4 H. H-C(11,11',15,15'). - MS.: 532 (58, M^+), 440 (4, M^+ - 92), 426 (10, M^+ - 106), 91 (100).

5. Herstellung von (-)-Perillylalkohol (11). Die Lösung von 5 g 5 in 50 ml Äthanol/Äther 9:1 wird mit der Lösung von 1,4 g NaBH₄ in 1 Std. bei RT. stehengelassen; nach üblicher Aufarbeitung und Destillation bei 100°/17 Torr (Kugelrohr) resultierten 4,405 g 11 (87%). $[a]_D = -82^\circ$. -1H-NMR. (90 MHz, CDCl₃): 1,2-1,65 (m, 2 H, 2 H-C(6)); 1,73 (s, 3 H, 3 H-C(8)); 1,88 (s, 1 H, H-O); 2,06 (m, 5 H, 2 H-C(4), 2 H-C(7) und H-C(5)); 3,98 (s, 2 H, 2 H-C(1)); 4,71 (s, 2 H, 2 H-C(10)); 5,68 (m, 1 H, H-C(3)).

6. Herstellung von Perillylbromid (12). Die Lösung von 2 g 11 in 100 ml trockenem Äther, wurde bei -20° unter Rühren tropfenweise mit 1,43 g PBr₃ versetzt. Dann wurde auf RT. erwärmt und 5 Std. weiter gerührt. Darauf wurde die Lösung auf Eis gegossen, mit H₂O und NaHCO₃-Lösung gewaschen. Nach Trocknen und Eindampfen wurden 2,55 g 12 erhalten, das sofort weiterverarbeitet wurde. - ¹H-NMR. (90 MHz, CDCl₃): 1,2-1,65 (m, 2 H, 2 H-C(6)); 1,73 (s, 3 H, 3 H-C(8)); ca. 2,0-2,35 (m, 5 H, 2 H-C(4), 2 H-C(5) und H-C(7)); 3,93 (s, 2 H, 2 H-C(1)); 4,71 (s, 2 H, 2 H-C(10)); 5,88 (m, 1 H, H-C(3)).

7. Herstellung von (-)-Perillyl-triphenylphosphoniumbromid (13). Das im Kap. 6 erhaltene 12 (2,55 g) wurde zusammen mit 3,11 g Triphenylphosphin in 50 ml Benzol gelöst und 3 Tage bei RT. stehengelassen. Das Phosphoniumsalz kristallisierte in langen, farblosen Spiessen aus; Ausbeute 4,52 g (80%); Smp. 109° (Zers.); $[a]_D = -32,4^\circ. - ^1H$ -NMR. (90 MHz, CDCl₃): 1,63 (s, 3 H, 3 H–C(8)); 1,2-2,3 (m, 7 H, 2 H–C(6), 2 H–C(4), 2 H–C(7) und H–C(5)); 4,37-4,77 (m, 4 H, 2 H–C(1) und 2 H–C(10)); 5,63 (m, 1 H, H–C(3)); 7,76 (m, 15 H, arom. H).

8. Synthese von (\pm) -1/meso-1. Die Lösung von 198 mg 13 in 2 ml Äther wurde unter Ar und Rühren bei RT. mit 0,5 ml 1N NaOCH₃ versetzt. Nach 40 Min. wurde die Lösung von 40 mg Crocetindial in 1,5 ml CH₂Cl₂ zugefügt. Nach 20stdg. Stehenlassen wurde mit 100 ml CH₂Cl₂ verdünnt und mit Ammoniumchlorid-, Hydrogencarbonat-Lösung und Wasser gewaschen und wie üblich aufgearbeitet. Das erhaltene Produkt wurde an Kieselgel 60 (*Merck*-Kolonne, 3,4×25 cm) mit Toluol chromatographiert. Aus der Hauptzone wurden 69 mg (\pm) -1/meso-1 erhalten, aus der Nebenzone 6,5 mg C₃₂-Aldehyd (Mono-olefinierungsprodukt, das nicht weiter untersucht wurde). Umkristallisation von (\pm) -1/meso-1 aus Benzol gab ziegelrote, glänzende Kristalle, Smp. 218-220° (evakuierte Kapillare, nicht korr.). Spektraldaten, mit Ausnahme von $[a]_D$ und CD. entsprachen genau denjenigen von (-)-1.

9. Herstellung von (-)- (\mathbf{R}) -3-t-Butyldimethylsilyloxy- β -ionon (15). Die Lösung von 4,4 g (-)- (\mathbf{R}) -3-Hydroxy- β -ionon in 35 ml CH₂Cl₂ wurde zunächst mit 0,8 g 4-Dimethylaminopyridin und 2,65 g Triäthylamin und hierauf mit einer Lösung von 3,65 g t-Butyldimethylchlorsilan in 60 ml CH₂Cl₂ tropfenweise in Ar-Atmosphäre und unter Rühren versetzt. Da nach 24 Std. Rühren bei RT. immer noch 14 nachzuweisen war, wurden weitere 660 mg (t-Butyl)dimethylchlorsilan zugefügt und die Lösung etwas erwärmt. Sobald das Hydroxyionon umgesetzt war, wurde mit 150 ml Äther verdünnt und die Lösung nacheinander mit Wasser, CuSO₄- und NaCl-Lösung ausgewaschen. Übliche Aufarbeitung mit anschliessender Chromatographie an desaktiviertem Kieselgel 60 (Merck; Zugabe von 10% H₂O) mit Hexan/Äther 2:1 ergab 6,5 g eines zähen, gelblichen Öls. $[a]_D = -60,7^\circ$. - UV.: 290 nm (qual.). -

¹⁷) Zuordnungen austauschbar.

¹H-NMR. (80 MHz, CDCl₃): 0,08 (*s*, 6 H, 2 H₃C(Si)); 0,87 (*s*, 9 H, (H₃C)₃C); 1,09 (*s*, 6 H, 3 H–C(1)); 1,26-2,3 (*m*, 4 H, 2 H–C(2) und 2 H–C(4)); 1,75 (*s*, 3 H, H₃C–C(5)): 2,28 (*s*, 3 H, 3 H–C(9)); 3,90 (*m*, 1 H, H–C(3)); 6,07 und 7,19 (*AB*, J = 15, 2 H, H–C(7) und H–C(8)).

10. Herstellung von (-)-3-[(R)-4-t-Butyldimethylsilyloxy-2, 6, 6-trimethyl-1-cyclohexen-1-yl]propensäure (16). Zur Lösung von 7,5 g NaOH in 36 ml Wasser wurden unter Rühren und Eiskühlung langsam zunächst 3,2 ml Br₂, dann die Lösung von 6,5 g 15 in 15 ml Dioxan getropft und je 1 Std. bei 0° und RT. gerührt. Nach Verdünnen mit 50 ml Wasser wurde das gebildete Brommethan und ein Teil des Dioxans durch Einengen i.V. entfernt. Hierauf wurde die Lösung von 1,87 g Na₂S₂O₅ in 30 ml Wasser zugegeben, mit 5proz. H₂SO₄-Lösung angesäuert und mit Äther extrahiert. Nach üblicher Aufarbeitung wurden 6,5 g rohe Carbonsäure erhalten. Sie bestand zu ca. $\frac{2}{3}$ aus 16 und $\frac{1}{3}$ aus entsilyliertem 16.

Daten von 16. Sdp. 110°/0,01 Torr (Kugelrohr); $[a]_D = -62,9^{\circ}$. - UV.: 272, 207 (qual.). -¹H-NMR. (90 MHz, CDCl₃): 0,08 (s, 6 H, 2 H₃C(Si)); 0,88 (s, 9 H, (H₃C)₃C); 1,08 (s, 6 H, 2 H₃C(1)); 1,47 (t, $J(2,3) \approx J(\text{gem.}) \approx 12$, 1 H, H_{ax} -C(2)); 1,69 ($d \times d$, J(2,3) = 4, J(gem.) = 12, 1 H, H_{aq} -C(2)); 1,76 (s, 3 H, H₃C-C(5)); 2,19 (m, 2 H, 2 H-C(4)); 3,87 (m, 1 H, H-C(3)); 5,76 und 7,43 (AB, J = 16, H-C(7) und H-C(8)). - MS.: 267 (11, M^+ - t-Butyl), 249 (4, M^+ - 57 - 18), 211 (100, M^+ - 57 - 56); 193 (9, M^+ - 131).

11. Herstellung von (-)-3-[(R)-4-(t-Butyl)dimethylsilyloxy-2, 6, 6-trimethyl-1-cyclohexen-1-yl]propen-1-ol (17). Zur Suspension von 371 mg LiAlH₄ in 5 ml Äther wurde unter Rühren bei 0° die Lösung von 793 mg 16 in 10 ml Äther getropft. Nach Rühren bei RT. über Nacht wurde Äther, der etwas Essigester und Wasser enthielt, zugegeben, mit 5proz. H₂SO₄-Lösung angesäuert und wie üblich aufgearbeitet. Nach Destillation bei 100°/0,04 Torr (Kugelrohr) wurden 646 mg (85%) 17 erhalten, $[a]_D = -84,1^\circ$. – UV.: 232 (qual.). – ¹H-NMR. (80 MHz, CDCl₃): 0,08 (s, 6 H, 2 H₃C(Si)); 0,90 (s, 9 H, (H₃C)₃C); 1,01 und 1,03 (2 s, 6 H, 2 H₃C(1)); 1,68 (s, 3 H, H₃C-C(5)); 1,2-1,7 (m, 3 H, 2 H-C(2) und H-O); 1,75-2,2 (m, 2 H, 2 H-C(4)); ca. 3,8 (m, 1 H, H-C(3)); 4.21 (d, J=5,5, 2 H, 2 H-C(9)); 5,62 (AB-Teil, $d \times t$, J(8,7) = 16, J(8,9) = 5,5, 1 H, H-C(8)); 6,10 (AB-Teil, d, J(7,8) = 16, 1 H, H-C(7)).

12. Herstellung von (-)-3-l(R)-4-(t-Butyl)dimethylsilyloxy-2, 6, 6-trimethyl-1-cyclohexen-1-yl]propenal (18). Die Lösung von 120 mg 17 in 10 ml trockenem Essigester wurde mit 1,5 g MnO₂ (Merck)⁻ 30 Min. bei RT. intensiv gerührt. Nach Filtration durch Celite, Eindampfen und Destillation des Rückstandes bei 90°/0,04 Torr (Kugelrohr) wurden 98 mg (82%) von semikristallinem 18 erhalten; $[a]_D = -30,4^{\circ}. - UV.:$ 289, 217 (qual.). - ¹H-NMR. (90 MHz, CDCl₃): 0,05 (s, 6 H, 2 H₃C(Si)); 0,86 (s, 9 H, (H₃C)₃C); 1,09 (s, 6 H, 2 H₃C(1)); ca. 1,2-1,7 (m, 2 H, 2 H-C(2)); 1,77 (s, 3 H, 3 H-C(5)); ca. 1,8-2,5 (m, 2 H, 2 H-C(4)); ca. 3,9 (m, 1 H, H-C(3)); 6,16 (AB-Teil, d×d, J(8,7)=16, J(8,9)=7, 1 H, H-C(8)); 7,2 (AB-Teil, d, J(7,8)=16, 1 H, H-C(7)); 9,52 (d, J=7, 1 H, CHO).

13. Herstellung von 5-Äthoxycarbonyl-2, 4-pentadienyl-phosphonsäurediäthylester (19). Bei RT. wurden 9,65 g 6-Brom-sorbinsäureäthylester [44] und 7,31 g Triäthylphosphit zusammengegeben und hierauf unter N₂-durchleiten 16 Std. auf 50° gehalten. Dann wurde noch 30 Min. auf 100° erhitzt. Nach Destillation bei 150°/0,02 Torr (Kugelrohr) wurden 11 g (90%) eines blassgelben Öls erhalten.

14. Herstellung von (R)-3-(t-Butyl) dimethylsilyloxy-19, 20-dinor-vitamin-A-säureäthylester (20). Die Suspension von 114 mg fein gepulverter KOH in 2 ml THF wurde bei RT. und unter N₂ langsam und tropfenweise mit einer Lösung von 117 mg 18 und 210 mg 19 in 2 ml THF versetzt. Nach 2 Std. wurde durch eine Schicht Kieselgel 60 (Merck) filtriert und das Filtrat zur Trockene eingedampft. Der Rückstand wurde in wenig Hexan/Äther 1:1 aufgenommen und mit demselben Lösungsmittel an Kieselgel 60, desaktiviert mit 10% Wasser, chromatographiert. Ausbeute 93 mg (57%) gelbes Öl. – UV.: 351 (qual.).

15. Herstellung von (-)-(R)-3-Hydroxy-19,20-dinor-vitamin-A-säureäthylester (21). Wurde das unter Kap. 10 beschriebene Gemisch von $\frac{1}{3}$ 16 und $\frac{1}{3}$ entsilyliertem 16 nach Kap. 14 mit dem Phosphonat 19 olefiniert, so ergab die chromatographische Trennung, wie in Kap. 14 beschrieben, aus 4,0 g Gemisch 20/21 1,89 g 20 und 658 mg 21. Nach Kristallisation aus Äther/Hexan, blassgelbe Kristalle, Smp. 85-87°; $[a]_D = -110^\circ$. – UV.: 351 (42300). – CD.: 298 (0), ca. 250 (-2,1), 215 (0). – ¹H-NMR. (80 MHz, CDCl₃): 1,08 (s, 6 H, 3 H–C(16,17)); 1,27 (t, J=7, 3 H, COOCH₂CH₃); ca. 1,2-1,7

¹⁸) Die ¹H-NMR.-Spektren von (all-E)-19,20-Dinor-vitamin-A-säuremethylester und von (R)-3-Hydroxy-vitamin-A-säure und ihrem Methylester sind in [25] bzw. [45] zu finden.

¹⁹) Rauschentkoppelt; Zuordnungshilfen [26] und durch Teilentkopplung.

(m, 2 H, 2 H–C(2)); 1,75 (s, 3 H, 3 H–C(18)); ca. 1,8–2,5 (m, 2 H, 2 H–C(4)); ca. 4,13 (m, 1 H, H–C(3)); 4,22 (qa, J=7, COOCH₂CH₃); 5,86 (d, J=16, H–C(14)); ca. 5,9–7,1 (m, 6 H, vinyl. H); 7,36 ($d \times d$, J(13,14)=16, J(13,12)=10, 1 H, H–C(13)¹⁸)). – ¹³C-NMR. (20 MHz, CDCl₃)¹⁹): 14,3 (COOCH₂CH₃); 21,6 (C(18)); 28,7 und 30,2 (C(16,17)¹⁷)); 37,0 (C(1)); 42,7 (C(4)); 48,5 (C(2)); 60,2 (COOCH₂CH₃); 64,6 (C(3)); 120,3 (C(14)); 128,3 (C(5)); 129,4 (C(12)); 130,5 (C(13)); 133,5 (C(8)); 133,7 (C(7)); 137,1 (C(6)); 138,0 (C(9)); 140,9 (C(11)); 144,5 (C(13)); 167,2 (C(15)).

16. Herstellung von (R)-3-(t-Butyl)dimethylsilyloxy-19,20-dinor-vitamin-A (22). Die Lösung von 1,5 g 20 in 150 ml Äther wurde bei 0° und unter N₂ mit 15 ml DIBAH (1M in Hexan) reduziert. Nach 15 Min. wurden 15 ml Wasser zugegeben und wie üblich aufgearbeitet. Das Rohprodukt (λ_{max} 318 nm (qual.)) wurde sofort weiterverarbeitet; s. Kap. 18.

17. Herstellung von (-)-(R)-3-Hydroxy-19, 20-dinor-vitamin-A (23). Analog zu Kap. 16 wurden 200 mg Ester 21 reduziert. Nach Chromatographie an Alox (Akt. IV nach Brockmann & Schodder) mit Hexan/Essigester 1:1 wurden 141 mg (81%) gelbliche Kristalle, Smp. 116-118° erhalten; $[a]_D = -124°$ (Methanol). - UV.: 318 (48700). - CD.: 350 (0), ca. 319 (schwach negativ), 290 (0), ca. 266 (schwach positiv), 253 (0), ca. 233 (-1,1). - ¹H-NMR. (80 MHz, CDCl₃): 1,06 (s, 6 H, 3 H-C(16,17)); ca. 1,2-1,7 (m, 2 H, 2 H-C(2)); 1,72 (s, 3 H, 3 H-C(18)); ca. 1,75-2,6 (m, 2 H, 2 H-C(4)); ca. 3,9 (m, 1 H, H-C(3)); 4,18 (d, J=7, 2 H, 2 H-C(15)); 6,10 und 6,22 (je br. s, 2 H und 6 H, vinyl. H). - ¹³C-NMR. (20 MHz, CDCl₃)¹⁹): 21,8 (C(18)); 28,7 und 30,3 (C(16,17)¹⁷)); 37,0 (C(1)); 42,6 (C(4)); 48,5 (C(2)); 63,4 (C(15)); 65,0 (C(3)); 127,2 (C(5)); 131,2, 131,3, 131,5, 131,7, 131,9, 133,4, 134,0 und 134,2 (8 sp²-C-Atome der Polyenkette); 137,3 (C(6)).

18. Herstellung von (R)-3-(t-Butyl)dimethylsilyloxy-19, 20-dinor-vitamin-A-aldehyd (24). Das im Kap. 16 beschriebene 22 wurde in 150 ml Essigester gelöst und mit 15 g MnO_2 (Merck) 15 Min. bei RT. intensiv gerührt. Nach Filtration durch Celite und Eindampfen wurden 1,26 g 24 (93%) in öliger Form erhalten. Er wurde sofort für die reduktive Dimerisierung (s. Kap. 20) eingesetzt.

19. Herstellung von (R)-3-Hydroxy-19, 20-dinor-vitamin-A-aldehyd (25). Analog zu Kap. 18 wurden 135 mg 23 in 35 ml Essigester mit 1,8 g MnO₂ oxydiert. Die erhaltenen 129 mg wurden an Kieselgel 60 (Merck) mit CH₂Cl₂/Hexan 4:1 und anschliessend nochmals an ZnCO₃/Celite 2:1 mit Toluol/Hexan/ Aceton 10:10:1 bis 2 chromatographiert. Erhalten wurden 51,6 mg reines 25 als gelbes, zersetzliches Öl. – UV.: 367 (28900). – CD.: 430 (0), ca. 384 (+0,4), 340 (0), ca. 269 (-1,3), 227 (0), 210 (positive Endabsorption). – ¹H-NMR. (80 MHz, CDCl₃): 1,05 (s, 6 H, 3 H–C(16,17)); ca. 1,2-1,7 (m, 2 H, 2 H–C(2)); 1,73 (s, 3 H, 3 H–C(18)); ca. 1,75-2,4 (m, 2 H, 2 H–C(4)); ca. 3,95 (m, 1H, H–C(3)); ca. 5,8-7,7 (m, 8 H, vinyl. H); 9,49 (d, J=8, 1H, CHO). – ¹³C-NMR. (20 MHz, CDCl₃)¹⁹): 21,6 (C(18)); 28,7 und 30,2 (C(16,17)¹⁷)); 37,0 (C(1)); 42,7 (C(4)); 48,5 (C(2)); 67,4 (C(3)); 128,8 (C(5)); 137,1 (C(6)); 129,3, 130,2, 130,6, 133,3, 134,9, 139,7, 142,9 und 152,0 (8 sp²-C-Atome der Polyenkette); 193,4 (C(15)).

20. Herstellung von (3R, 3'R)-3, 3'-Bis [(t-butyl)dimethylsilyloxy]-19, 20, 19', 20'-tetranor-zeaxanthin (26). Zu 20 ml trockenem THF wurden unter N_2 und Rühren bei 0° 0,30 ml frisch destilliertes TiCl₄ und hierauf 215 mg LiAlH₄ gegeben. Dann wurde 20 Min. unter Rückfluss erhitzt. Hierauf wurde eine Lösung von 630 mg 24 und 200 mg 1,8-bis(Dimethylamino)naphthalin in 10 ml THF in die siedende Lösung gegeben und 40 Min. weiter erhitzt. Nach Abkühlen wurden nacheinander 20 ml Hexan, 20 ml Äther und 20 ml 20proz. K₂CO₃-Lösung (in Wasser) zugegeben. Es folgte Filtration des Gemisches durch Celite. Das Filtrat wurde mit Wasser neutral gewaschen, über MgSO4 getrocknet und eingedampft. Der Rückstand wurde an Alox (Aktivität IV) mit Toluol/Hexan 1:1 chromatographiert. Erhalten wurden 175 mg (29%) 26, gelbbraune Kristalle mit Metallglanz, Smp. 180-181° (evakuierte Kapillare, nicht korr.), aus CH₂Cl₂/Methanol. - UV./VIS. (Hexan/Äther 1:1): s. Tabelle 2. - CD. (EPA): 360(0), 336(+0.7), 315(0), 282(-4.1), 262(0), 246(+3.8), 233(0), 220(-6.6), 212(0), -¹H-NMR. (200 MHz, CDCl₃): 0,08 (s, 12 H, 2×2 H₃C(Si)); 0,90 (s, 18 H, 2 (H₃C)₃C); 1,05 und 1,06 $(je s, 12 H, 3 H-C(16, 16', 17, 17'^{17})); 1,35-1,75 (m, ca. 4 H, 2 H-C(2,2')); 1,73 (s, 6 H, 3 H-C(18, 18'));$ 2-2,4 (m, 4 H, 2 H-C(4,4')); ca. 3,93 (m, 2 H, H-C(3,3')); 6,14 (s, 4 H, H-C(7,7',8,8')); 6,30 (s, 16 H, vinyl. H). - ${}^{13}C$ -NMR. (50,3 MHz, CDCl₃)¹⁹)²⁰): 4,55 (C(Si)); 18,26 (C(CH₃)₃), 21,67 (C(18,18')); 25,95 ((CH₃)₃C); 28,63 und 30,20 (C(16,16') und C(17,17')¹⁷)); 36,98 (C(1,1')); 43,30 (C(4,4')); 48,96 (C(2,2')); 65,54 (C(3,3')); 128,13 (C(5,5')); 131,42, 131,72, 132,81, 133,14, 133,38, 133,55 (4 C),

²⁰) Zusätzlich wurde für die Zuordnungen die INEPT (Insensitive Nuclei Enhanced by Polarization Transfer)-Technik [46] angewandt.

133,93 und 134,24 (sp²-C-Atome der Polyenkette); 137,12 (C(6,6')). – MS.: 740 (25, M^{+}), 662 (2, M^{+} – 78), 608 (1, M^{+} – 132), 566 (1, M^{+} – 174), 73 (100).

21. Herstellung von (3 R, 3' R)-3, 3'-Dihydroxy-19, 19', 20, 20'-tetranor-zeaxanthin (2). Die Lösung von 320 mg **26** in 15 ml THF wurde mit 600 mg Tetraäthylammoniumfluorid versetzt und anschliessend 4 Std. bei RT. gerührt. Hierauf wurde mit Äther verdünnt und die Lösung mit Wasser ausgewaschen. Nach üblicher Aufarbeitung erfolgte eine Säulenchromatographie an ZnCO₃/Celite 3:1 mit Hexan/Äther 1:1. Aus der Hauptzone wurden 110 mg **2** erhalten, bräunlich-gelbe Kristalle aus CH₂Cl₂/Hexan/Methanol, Smp. 207-208°. - UV./VIS. (EPA): s. *Tabelle* 2. - CD. (EPA, RT.): 400 (0), ca. 340 (+1,4), 313 (0), 283 (-6,0), 265 (0), 247 (+6,7), 233 (0), 220 (-12,6), 210 (0); -90°: 385 (0), 371 (+4,7), 337 (0), 285 (-19,1), 265 (0), 248 (+20,4), 235 (0), 221 (-40,8), 210 (0); s. auch *Figur* 3. - ¹H-NMR. (200 MHz, CDCl₃): 1,07 (s, 12 H, 3 H-C(16, 16', 17, 17')); 1,56 (s, OH); 1,3-1,7 (m, 4 H, 2 H-C(2, 2')); (1,745 (s, 6 H, 3 H-C(18, 18')); 2,04 (A-Teil×A, J(gem)=18, J(4,3)=10, 2 H, H_{ax}-C(4,4')); 6.14 (s, 4 H, H-C(7,7'.8.8')); 6,30 (s, 14 H, vinyl. H). - ¹³C-NMR. (50,3 MHz, CDCl₃)¹⁹)²⁰)): 21,65 (C(18, 18')); 2,72 und 30,19 (C(16, 16') und C(17, 17')⁷¹); 37,05 (C(1, 1')); 42,71 (C(4,4')); 48,54 (C(2,2')); 127,31-137,37 (sp²-C-Atome). - MS.: 512 (51, *M*⁺), 494 (1, *M*⁺-H₂O), 486 (1,*M*⁺-28), 434 (4, *M*⁺-Benzol), 390 (1, *M*⁺-122), 382 (1, *M*⁺-130), 57 (100).

22. Herstellung von (+)-(R)-3-(2,6,6-Trimethyl-2-cyclohexen-1-yl)-(E)-propensäure (28). Der Hypobromitabbau an 3,39 g (+)-a-Ionon [31] ($[a] = 404^{\circ}$ wurde analog zu Kap. 10 durchgeführt und lieferte 2,75 g 28 (80%), Sdp. 150°/0,01 Torr (Kugelrohr) als farbloses Öl; $[a]_D = +367^{\circ}$ ([36]: $-245,5^{\circ}$ für das Enantiomere). - ¹H-NMR. (90 MHz, CDCl₃): 0,82 und 0,89 (je s, je 3 H, 2 H₃C(1)); 1,55 (s, 3 H, 3 H-C(5)); 1,0-1.7 (m, 2 H, 2 H-C(3)); 2,02 (m, 2 H, 2 H-C(2)); 2,28 (d, J=10, 1 H, H-C(6)); 5,47 (m, 1 H, H-C(4)); 5.77 (d, J=16, 1 H, H-C(8)); 6,90 (d×d, J=16 und 10, H-C(7)); 11,1 (s, 1 H, COOH). - ¹³C-NMR. (20 MHz, CDCl₃)¹⁹)²⁰)): 22,74 (C(5)); 23,03 (C(3)); 26,81 und 27,69 (2 CH₃(1)); 31,18 (C(2)); 32,54 (C(1)); 54,17 (C(6)); 121,79 (C(4)); 122,84 (C(8)); 131,67 (C(5)); 152,85 (C(7)); 172,12 (C(9)).

23. Herstellung von (+)- (\mathbb{R}) -3-(2, 6, 6-Trimethyl-2-cyclohexen-1-yl)- (\mathbb{E}) -2-propenol (29). Die übliche Reduktion mit 0,95 g LiAlH₄ an 2,75 g 28 in 15 ml Äther ergab 2,51 g 29 (91%), farbloses Öl, Sdp. 110-115°/0,01 Torr (Kugelrohr); $[n]_{\mathbb{D}} = +307^{\circ}$. - ¹H-NMR. (80 MHz, CDCl₃): 0,80 und 0,86 (2 s, je 3 H, 2 H₃C(1)); ca. 1-1,5 (m, 2 H, 2 H-C(3)); 1,55 (s, 3 H, H₃C-C(5)); 1,99 (m, 3 H, 2 H-C(2) und H-C(6)); 2,78 (s, 1 H, OH); 4,08 (d, 2 H, 2 H-C(9)); 5,38 (m, 1 H, H-C(4)); ca. 5,53 (m, 2 H, H-C(7) und H-C(8)). - ¹³C-NMR. (20 MHz, CDCl₃)¹⁹)²⁰)): 23,09 (H₃C-C(5)); 23,31 (C(3)); 27,16 und 27,78 (2 H₃C-C(1)); 31,79 (C(2)); 32,19 (C(1)); 54,32 (C(6)); 63,52 (C(9)); 121,18 (C(4)); 131,04 und 133,29 (C(7) und C(8)¹⁷)); 134,23 (C(5)).

24. Herstellung von (+)-(R)-3-(2, 6, 6-Trimethyl-2-cyclohexen-I-yl)-(E)-2-propenal (**30**). Die Oxydation von 2,31 g **29** erfolgte durch Behandlung mit 21 g MnO₂ (Merck) in 80 ml Essigester während 3 Std. bei RT. und gab nach analoger Aufarbeitung wie unter Kap. 12 2,16 g (94%) **30**, farbloses Öl, Sdp. 100-105°/12 Torr (Kugelrohr). - UV.: 224° (qual.). - ¹H-NMR. (90 MHz, CDCl₃): 0,85 und 0,92 (s, je 3 H, 2 H₃C(1)); ca. 1,2-1,5 (m, 2 H, 2 H-C(2)); 1,53 (s, 3 H, H₃C-C(5)); 2,03 (m, 2 H, 2 H-C(3)); 2,4 (d, J=10, 1 H, H-C(6)); 5,5 (m, 1 H, H-C(4)); 6,07 (d×d, J(8,7)=16, J(8,9)=8, 1 H, H-C(8)); 6,63 (d×d, J(7,8)=16, J(7,6)=10, 1 H, H-C(7)); 9,5 (d, J(9,8)=8, 1 H, CHO).

25. Herstellung von (+)-(R)-9-(2, 6, 6-Trimethyl-2-cyclohexen-1-yl)-(all-E)-2, 4, 6, 8-nonatetraensäureäthylester (**31**). In 60 ml trockenem THF wurden 4,8 g fein pulverisierte KOH suspendiert. Dazu wurde bei 0° langsam und unter gutem Rühren eine Lösung von 2,16 g **30** und 8,3 g **19** in 40 ml THF innert 20 Min. getropft. Nach 3 Std. Rühren bei RT. wurde durch Kieselgel 60 (*Merck*) filtriert und das Filtrat i.V. bis auf ca. $\frac{1}{4}$ eingeengt. Hierauf wurde der Rückstand mit Äther verdünnt und wie üblich aufgearbeitet. Ausbeute 2,05 g rohes **31**. Nach Chromatographie an Kieselgel 60 (desaktiviert mit 10% H₂O) mit Hexan/Essigester 7:3 wurden 1,49 g (41%) reiner **31** erhalten; gelbes Öl; $[a]_D = +453^\circ$. UV.: 337 (41300). - CD.: 370 (0), 335 (+3,4), 280 (0), 238 (+3,1). - ¹H-NMR. (90 MHz, CDCl₃): 0,83 und 0,90 (2 s, je 3 H, 3 H-C(16,17)¹⁷)); 1,27 (t, COOCH₂CH₃); 1,2-1,5 (m) 2 H. 2 H-C(2)); 1,58 (s, 3 H, 3 H-C(18)); 1,8-2,3 (m, 2 H-C(3)); 2,16 (d, J=10, 1H, H-C(6)); 4,17 (qa, 2 H, COOCH₂CH₃); 5,39 (m, H-C(4)); 5,44-6,9 (m, vinyl. H); 7,28 (d×d, J(7,8)= 16, J(7,6)= 10, 1 H, H-C(7)). - ¹³C-NMR. (20 MHz, CDCl₃)¹⁹)²⁰)): 14,32 (COOCH₂CH₃); 22,98 (C(18)); 23,08 (C(3)); 27,50 und 27,61 (C(16) und C(17)¹⁷)); 31,64 (C(2)); 32,60 (C(1)); 54,89 (C(6)); 60,05 (COOCH₂CH₃), 121,34 (C(4)); 133,60 (C(5)); 144,49 (C(7)); 120,38, 129,26, 130,14, 137,44, 139,33 und 141,03 (übrige sp²-C-Atome); 166,95 (CO). - MS.: 300 (11, M⁺), 285 (1, M⁺-15), 271 (1, M^+-29), 255 (1, M^+-45), 244 (24, M^+-56), 227 (2, M^+-73), 215 (16, M^+-85), 197 (7, M^+-103), 91 (100).

26. Herstellung von (+)-(R)-9-(2, 6, 6-Trimethyl-2-cyclohexen-1-yl)-(all-E)-2, 4, 6, 8-nonatetraen-1-ol (32). Die Lösung von 1,49 g 31 in 150 ml Äther wurde bei 0° durch langsames Zutropfen von 18 ml 1M DIBAH in Hexan reduziert. Nach 20 Min. wurden langsam 20 ml Wasser zugetropft, 1 Std. weitergerührt, darauf die Wasserphase mit 2N HCl angesäuert und wie üblich aufgearbeitet. Nach Chromatographie an Alox (neutral, Aktivität IV) mit Hexan/Essigester 1:1 wurden 1,31 g (100%) eines gelben Öls erhalten; $[a]_{\rm D}$ = +390°. - UV.: 318 (39100), 303 (44200), 291 (30300), ca. 281 (16700). - CD.: 340 (0). 317 (+6,8), 303 (+9,0), 290 (+6,6), ca. 288 (+3,0), 235 (0), 205 (positive Endabsorption). - ¹H-NMR. (80 MHz, CDCl₃): 0,82 und 0,89 (2 s, je 3 H, 3 H-C(16,17)¹⁷)); ca. 1,1-1,5 (m, 2 H-C(2)); 1,58 (s, 3 H, 3 H-C(18)); ca. 1,75-2,25 (m, 3 H, 2 H-C(3) und H-C(6)); 4,19 (d, J=6, 2 H, 2 H-C(15)); ca. 5,25-6,1 (m, 5 H, H-C(4) und 4 weitere vinyl. H); 6,20 (s, 4 H, 4 vinyl. H). - ¹³C-NMR. (20 MHz, CDCl₃)¹⁹)²⁰): 23,00 (C(18) und C(3)); 27,00 und 27,55 (C(16) und C(17)¹⁷)); 31,67 (C(2)); 32,51 (C(1)); 54,77 (C(6)); 62,91 (C(15)); 120,98 (C(4)); 130,75-133,94 (7 Signale); 136,38 (C(7)^o).

27. Herstellung von (R)-9-(2, 6, 6-Trimethyl-2-cyclohexen-1-yl)-(all-e)-2, 4, 6, 8-nonatetraenal (33). Die Behandlung von 1,31 g 32 mit 15 g MnO₂ (Merck) in 120 ml Essigester während 40 Min. bei RT. gab nach analoger Aufarbeitung wie im Kap. 12 1,19 g Rohprodukt und nach Chromatographie an ZnCO₃/Celite 3:1 mit Toluol/Hexan 1:1 0,82 g (64%) 33. – UV.: λ_{max} 351 S. 339, 325 S (in Äther, qual.). – ¹H-NMR. (80 MHz, CDCl₃): 0,80 und 0,90 (je s, je 3 H, 3 H–C(16,17)); 1,2–1,5 (m, 2 H, 2 H–C(2)); 1,57 (s, 3 H, 3 H–C(18)); 1,75–2,5 (m, 3 H, 2 H–C(3) und H–C(6)); 5,42 (m, 1H, H–C(4)); ca. 5,4–6,75 (m, vinyl. H); 7,10 (d×d, J(7,8)=16, J(7,6)=10, 1H, H–C(7)); 9,54 (d, J=8, 1H, CHO). – ¹³C-NMR. (20 MHz, CDCl₃)¹⁹)²⁰)): 22,95 (C(18)); 23,04 (C(3)); 26,94 und 27,61 (C(16) und C(17)¹⁷)); 31,55 (C(2)); 32,62 (C(1)); 54,87 (C(6)); 121,44 (C(4)); 133,39 (C(5)); 129,13, 129,66, 130,60, 131,42, 139,01, 140,54 und 142,98 (sp²-C-Atome); 151,78 (C(7)); 193,08 (CO).

28. Herstellung von (6R, 6'R)-19, 20, 19', 20'-Tetranor- ε , ε -carotin (3). Aus 820 mg 33 wurden in zwei Ansätzen analog der Vorschrift in Kap. 20 63 mg 3 erhalten. Kristalle aus Hexan/CH₂Cl₂/Methanol, Smp. 149-150° (evakuierte Kapillare, nicht korr.). - UV./VIS. (Hexan): s. Tabelle 3. - CD. (EPA, RT.): 465 (+12.5), 421 (+12.5), 400 (+8.9), ca. 375 (+4.5), 345 (0), 280 (0), 258 (+24.1), 225 (0); s. Figur 4. - ¹H-NMR. (200 MHz, CDCl₃): 0,82 (s, 6 H, 3 H-C(16,16')²¹)); 0,895 (s, 6 H, 3 H-C(17,17')²¹)); 1,175 (m, 4 H, 2 H-C(2,2')); 1,425 (m, 4 H, 2 H-C(2,2')); 1,58 (s, 6 H, 3 H-C(18,18')); 2,02 (m, 4 H, 2 H-C(3,3')); 2,16 (d, J=10, 2 H, H-C(6,6')); 5,41 (m, 2 H, H-C(4,4')); 5,57 (d×d, J(7,8)=14, J(7,6)=10, 2 H, H-C(7,7)); 6,08 (d×d, J(8,7)=14, J(8,9)=9, 2 H, H-C(8,8')); Sch. 6,24 und 6,285 (s, 14 H, vinyl. H). - ¹³C-NMR. (50,3 MHz, CDCl₃): 23,03 (C(18,18')); 23,14 (C(3,3')); 26,99 (C(17,17')); 27,67 (C(16,16')); 31,65 (C(2,2')); 32,61 (C(1,1')); 54,85 (C(6,6')); 121,05 (C(4,4')); 131,25, 132,08, 132,71, 133,08, 133,39, 133,57, 133,62, 134,03 und 136,78 (sp²-C-Atome der Polyenkette). - MS:: 480 (100, M⁺), 465 (0,5, M⁺-15), 454 (1, M⁺-26), 424 (11, M⁺-56), 403 (0,5, M⁺-77), 374 (1,5, M⁺-106), 368 (2, M⁺-112), 358 (4, M⁺-122), 346 (3, M⁺-134), 302 (3,5, M⁺-178), 91 (72).

LITERATURVERZEICHNIS

- L. Bartlett, W. Klyne, W.P. Mose, P.M. Scopes, G. Galasko, A.K. Mallams, B.C.L. Weedon, J. Szabolcs & G. Tóth, J. Chem. Soc. (C) 1969, 2527.
- [2] N. Arpin & S. Liaaen-Jensen, Phytochemistry 8, 185 (1969); G. Borch, S. Norgård & S. Liaaen-Jensen, Acta. Chem. Scand. 25, 401 (1971).
- [3] a) R. Buchecker, H. Yokoyama & C.H. Eugster, Helv. Chim. Acta 53, 1210 (1970); b) R. Buchecker & C. H. Eugster, ibid. 54, 327 (1971); c) iidem, ibid. 56, 1124 (1973).
- [4] V. Sturzenegger, R. Buchecker & G. Wagnière, Helv. Chim. Acta 63, 1074 (1980).
- [5] K. Noack & A.J. Thomson, Helv. Chim. Acta 62, 1902 (1979).
- [6] K. Noack, Pure Appl. Chem., im Druck.
- [7] A. Moscowitz, Tetrahedron 13, 48 (1961); P. Crabbé, 'Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry', Holden-Day, San Francisco 1965, p. 13.

²¹) Zuordnungen gemäss [35] [47].

- [8] U. Weiss, H. Ziffer & E. Charney, Tetrahedron 21, 3105 (1965); E. Charney, H. Ziffer & U. Weiss, ibid. 21, 3121 (1965).
- [9] G. Wagnière & W. Hug, Tetrahedron Lett. 1970, 4765; iidem, Helv. Chim. Acta 54, 633 (1971); iidem, Tetrahedron 28, 1241 (1972).
- [10] E.A. Braude & E.S. Waight, in: 'Progress in Stereochemistry' (Ed. W. Klyne), 1, 126, Butterworths, London 1954; E.A. Braude, Experientia 11, 457 (1955).
- [11] L. Zechmeister, in: «Fortschritte der Chemie Organischer Naturstoffe» (Ed. L. Zechmeister), 18, 223, Springer, Wien 1960.
- [12] J. C.J. Bart & C. H. MacGillavry, Acta Crystallogr. B 24, 1587 (1968).
- [13] I. Ueda & W. Nowacki, Z. Kristallogr. 140, 190 (1974).
- [14] E. Märki-Fischer, R. Buchecker & C. H. Eugster, Helv. Chim. Acta 65, in Vorbereitung.
- [15] E. Guenther, 'The Essential Oils', Vol.2, 343, Van Nostrand, N.Y. 1949.
- [16] F. W. Semmler & B. Zaar, Ber. Deutsch. Chem. Ges. 44, 52 (1911).
- [17] A. Zumbrunn, Dissertation, Universität Zürich, in Vorbereitung.
- [18] J. D. Surmatis & A. Ofner, J. Org. Chem. 26, 1171 (1961).
- [19] K. Bernhard, F. Kienzle, H. Mayer & R. K. Müller, Helv. Chim. Acta 63, 1473 (1980).
- [20] L. Zechmeister & A. Polgár, J. Am. Chem. Soc. 65, 1522 (1943).
- [21] A. Hofer & C. H. Eugster, Helv. Chim. Acta 65, 365 (1982).
- [22] L. Zechmeister, A. L. Le Rosen, W.A. Schroeder, A. Polgár & L. Pauling, J. Am. Chem. Soc. 65, 1940 (1943).
- [23] H. Mayer, Pure Appl. Chem. 51, 535 (1979); A. Rüttimann & H. Mayer, Helv. Chim. Acta 63, 1456 (1980).
- [24] F. Texier-Boullet & A. Foucaud, Synthesis 1979, 884.
- [25] P.J. van den Tempel & H.O. Huisman, Tetrahedron 22, 293 (1966).
- [26] G. Englert, Helv. Chim. Acta 58, 2367 (1975).
- [27] A. Ishida & T. Mukaiyama, Chem. Lett. 1976, 1127.
- [28] E.J. Corey & A. Venkateswarlu, J. Am. Chem. Soc. 94, 6190 (1972).
- [29] A. Rüttimann & H. Mayer, Helv. Chim. Acta 63, 1456 (1980).
- [30] H. H. Inhoffen, F. Bohlmann & G. Rummert, Justus Liebigs Ann. Chem. 569, 226 (1950).
- [31] W. Eschenmoser, P. Uebelhart & C. H. Eugster, Helv. Chim. Acta 62, 2534 (1979).
- [32] R. Buchecker, R. Egli, H. Regel-Wild, Ch. Tscharner, C. H. Eugster, G. Uhde & G. Ohloff, Helv. Chim. Acta 56, 2548 (1973).
- [33] P.S. Manchand, R. Rüegg, U. Schwieter, P.T. Siddons & B.C.L. Weedon, J. Chem. Soc. 1965, 2019.
- [34] Ch. Tscharner, C. H. Eugster & P. Karrer, Helv. Chim. Acta 41, 32 (1958).
- [35] H.P. Märki & C.H. Eugster, Helv. Chim. Acta 64, 1257 (1981).
- [36] F. Haxo, Arch. Biochem. 20, 400 (1949).
- [37] J. B. Davis, L. M. Jackman, P. T. Siddons & B. C. L. Weedon, J. Chem. Soc. 1966C, 2154.
- [38] S. Liaaen-Jensen, S. Hertzberg, O.B. Weeks & U. Schwieter, Acta Chem. Scand. 22, 1171 (1968).
- [39] C. H. Eugster, R. Buchecker, Ch. Tscharner, G. Uhde & G. Ohloff, Helv. Chim. Acta 52, 1729 (1969).
- [40] G. Ohloff, E. Otto, V. Rautenstrauch & G. Snatzke, Helv. Chim. Acta 56, 1874 (1973).
- [41] R. Buchecker & C. H. Eugster, Helv. Chim. Acta 63, 2531 (1980).
- [42] W. Eschenmoser, P. Uebelhart & C. H. Eugster, Helv. Chim. Acta 65, 353 (1982).
- [43] A. Haag & C. H. Eugster, Helv. Chim. Acta 65, in Vorbereitung.
- [44] M.J. Berenguer, J. Castells, J. Fernandez & R. M. Galord, Synthesis 1973, 794.
- [45] H. Mayer & J.-M. Santer, Helv. Chim. Acta 63, 1467 (1980).
- [46] G. Morris & R. Freeman, J. Am. Chem. Soc. 101, 760 (1979).
- [47] C.H. Eugster, Pure Appl. Chem., im Druck.